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Bubble radius

x dimension of ellipsoid

y dimension of ellipsoid

z dimension of ellipsoid

Bubble diameter

Distance between bubble centers

Dimensionless distance between bubble centers, D = D'

a

Equivalent bubble diameter

An arbitrary function used in equation (40); for this work f(r) =

Function as defined by equation (9)

Acceleration of gravity
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Height of fluid above reference plane

Upper limit of integration in equation (7)
• .
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Kinetic energy

Potential energy
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Atmospheric pressure
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ANALYSISOFPROGRESS

By applying the principle of conservation of energy to the fluid

surrounding a rectilinearly rising spherical bubble, or column of non-

interfering bubbles,!an equation for the free liquid surface profile caused

by injection of gas bubbles into a tank of liquid was developed, i In

dimensionless form the surface profile is given by

Z(r) = F___ , (3d)
2HU2

and in dimensional form by

z = u2 Z(r) , Oe)
S

g

where

is a dimensionless time mean kinetic energy distribution and

F(r) V 2 (r,Z)dZ

J -_I - r2 , 0 (9)

Calculations of FU___ utilizing a potential flow model and a flow

model based upon the research of B. T. Chao (ii) were made_! A comparison

of the results showed that certain undesirable features obtained by use of

the potential flow model were eliminated or reduced by the Chao model. Thus,

the potential flow model was dropped from further consideration.i

Plots of Z(r) and Zs have been made for several Reynolds numbers to

demonstrate the behavior of the surface profile as the bubble rise velocity

is varied. The results for Z(r) showed that the dimensionless surface

- i -



< 450. Thus,profile was not a strong function of Reynolds numberfor NRe_

utilizing a least squares method, the following equation for Z(r), independ-

ent of NRein this range, was developed:

2Hz(r) .182907 + .086949r - .245937r 2 + .i02929r 3 - .012489r 4. (21)

In dimensional form

+ .0051464 (_)3 . .0006244 I_) 4]

(24)

Comparison of the surface profiles computed by the previous equations with

those predicted by numerical integration of F(r) showed that satisfactory

results were obtained by equations (21) and (24).

'Limited progress has been made in the area of bubble-to-bubble inter-

ference. A direct superposition method was employed to obtain a first

approximation to the velocity field generated by two bubbles of equal size,

rising side by side at the same velocity. The results of this method are

presented in graphical form.(

The surface disturbance caused by a single column of non-interfering

bubbles has been photographically recorded. Sequence photographs taken from

the frames of high speed motion picture film were made which show the build-

up and collapse of the surface disturbance. Images of the maximum disturbance

have been measured at a magnification, with reference to true size, of about

35 to i.\
/

-i_.The maximum surface disturbances due to several different bubbles have

been averaged and presented graphically.

iComparisons between these experim-_ental profiles and those predicted

analytically were made for bubbles of various Reynolds numbers. A surface

- 2 -



profile correlating procedure, modifying the analytically based equation by

accounting for bubble surface penetration, was developed utilizing the results

of the photographic workS.\ The resulting equation was

Z = Z H + _ a _ (28)
c s

where

= 0.00122 NRe - 0.305 . (29)

An interesting adjunct to this work was the discovery of the origin

of the spray droplets which appear above the liquid surface. These droplets

are formed when the gas bubbles break at the free liquid surface. A sequence

taken from the high speed motion picture film showing this phenomenon is

given.

-3 -



INTRODUCTION

This is the first Annual Progress Report for NAS8-11334,RESEARCH

STUDYFORDETERMINATIONOFLIQUID SURFACEPROFILEIN A CRYOGENICTANKDURING

GASINJECTION. The period covered is June 18, 1964 to June 17, 1965. This

report constitutes a compilation of the salient features of all previous

monthly and quarterly progress reports for the period covered. The material

is not presented in chronological order, but has been arranged for purposes

of clarity. The reader maywish to refer to previous quarterly reports for

certain details, such as Quarterly Progress Report #i for abstracts of many

of the articles given in the Bibliography.

PROGRESS

Whenbubbles are admitted into the bottom of a tank containing a

stagnant liquid, surface disturbances develop which maybe detrimental under

conditions where the height of the liquid surface is critical. Initiation

of the process entails complex transient phenomenawhich are difficult to

analyze. In an attempt to predict the surface profile, for given gas input

rates, the problem is greatly simplified if only the steady state case is

considered. The assumption of steady state maybe justified for somecases

where the total time of operation is large in comparison with the time lapse

of the initiation transient. In other cases, the initiation conditions may

be critical and thereby impose the necessity for consideration of the transient

behavior.

In order to better understand the phenomenaunder consideration, it

will be assumedthat analysis of the steady state case will yield useful re-

suits regarding the free surface profile. All subsequentodiscussion will be

concerned with steady state.

-4-



ANALYTICAL

Formulation of the Theory for Surface Profile Predictions

Consider a continuous stream or swarm of gas bubbles rising in an

initially stagnant liquid with a free surface. As a result of the rising

bubbles, the liquid will be set in motion, and after a period of time,

definite circulation patterns will be established° Prior to the injection

of the gas bubbles into the liquid, the free liquid surface would be flat

and possess a certain potential energy with respect to an arbitrary reference

plane. As a result of the rising bubbles, the free liquid surface will be

raised and distorted from the initial flat profile, indicating a change in

potential energy of the liquid at the surface over that which it possessed

prior to the initiation of the bubble injection. This change in the potential

energy distribution at the liquid surface is caused by the kinetic energy

imparted to the liquid by the rising bubbles°

That the above is the case may be seen by applying the conservation

of energy principle to the system. If we neglect friction and consider that

no work is done on or by the system, this principle may be stated simply as

IK.E. + _P.E. = Constant

where

K.E. is kinetic energy and

P.E. is potential energy.

For any point in the liquid regime the equation representing the

conservation of energy principle may be written by considering

- 5



KE ov2
gc

(F.E) = F + _m Ah
Pres sure arm gc

(P.Eo) = p gz

gravity gc

where 0 is the fluid density (the fluid is considered to be incompressible),

v is the fluid velocity, P is atmospheric pressure, g is the acceleration of

gravity, g is a dimensional constant, h is the height of the liquid above the
c

point in question, and z is the vertical coordinate measured from some

arbitrary reference plane; and observing that

[(K.E.) + (P.E.) + (P.E.) ] = Constant. (I)
pressure gravity

We shall now consider a single spherical gas bubble rising rectilinearly

in a cylindrical tank, filled with liquid, where the inside radius of the tank

is large in comparison to the bubble radius. A reference plane for potential

energy due to gravitational effects is taken as a plane located at section

I-i which is sufficiently removed from the bottom that entrance effects have

subsided and terminal velocity has been achieved. The plane is located so

that it passes through the center of the bubble. This may be seen in Figure i o

At a given radial position the energy passing a given plane, for

instance, plane i-i in Figure I, may be time averaged in order to predict the

mean value of the energy passing during a given time interval. This is tanta-

mount to taking a space average at a given instant. This procedure will thus

- 6 "
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hf

Free Liquid Surface

f

----_Section i-i

Z !

__t =0
p w

r w

Figure i. Single Spherical Bubble Rising Rectillnearly in

a Large Cylindrical Tank
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yield a time meankinetic energy level at plane i-i as a function of radial

location.

Writing equation (i) in terms of the time average kinetic energy and

evaluating it at plane i-i and at the free surface, yields

m

0V 2 + P + 0_h_ = P + 0 E Zs , (2)i
-- atm -----z atm
2 gc gc gc

or

m

Zs = h + i V 2 , (3)

f _ g

where V-_ is the time average of the velocity squared and Z s is the profile

of the free surface with respect to reference plane I-i. The following

assumptions have been made in arriving at equation (3):

P = P(z'), (4)

V-_ wall = 0 (5)

and

V 2 surface = 0 . (6)

Equation (3) is made dimensionless by multiplying each term by

U__ to obtain

2 g Zs : ---2_Uh f + Z , (3a)
U 2 U 2

where U is the bubble terminal velocity.

Thus, the height of the free surface is predicted from the time mean

kinetic energy distribution within the cylinder for steady state operating

conditions.

" 8 -



It should be noted that equation (3) could have also been obtained

by considering Bernoulli's equation for an irrotational, incompressible,

steady-flow system.

If the reference plane i-i, shown in Figure I, is taken where hf = 0,

equation (3a) reduces to

2gZ s = V 2

U_ U_
(3b)

Defining a dimensionless surface profile as

Z(r) = gZ s

u--Z,

we have

B

Z(r) = V 2 (3c)

Equation (3c) gives the dimensionless surface profile Z(r) in terms

of a mean kinetic energy, which is represented in the equation by V--_. A

defining equation for this quantity is developed in the following section°

Time Mean Kinetic Energy Relation

The concept of changing the observer to the bubble center from a

stationary position with the bubble going past _allows the determination of

the mean kinetic energy along the axial direction at a :given location. This

will later be used in conjunction with the bubble distribution and ascent

velocities to predict the gross surface effects.

By the first mean value integral theorum ,

-9 -
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(V2)H' _- (r',z') dz

J o

(7)

where r' ', ', z and H are the radial coordinate, vertical coordinate, and

upper limit of integration respectively, and_ is the velocity vector given

by

= iv + ju. (8)

Non-dimensionalizing r' ',Z,

equation (7) becomes

and H', with respect to" the .bubble radius a,

F(r) ------ (V--_)H = 2(r,z)dz

JIV V-r2, 0

(9) '

In equation (9) the lower limit of integration is _ when 0 _ r _ i,

in that the kinetic energy of the gas may be neglected, and 0 when l-_r--<oo.

Rewriting equation (9) in terms of the velocity components u and v, we have

f-

H

_'(r) -- (v_)H (u 2 + v 2) dz. (10)

1-_r 2, 0

- 10-



Combining equation (i0) with equation (3c) we obtain for the dimension-

less surface profile

= Fr
Z(r) _ (3d)

and for the dimensional surface profile

z = u2z(r) . (3e)
s

g

It now remains to determine appropriate values for F(r) for various combina-

tions of gases and liquids and bubble rise velocity. To do this requires a

knowledge of the fluid velocity field, i.e., a solution for the v_locity com-

ponents u and v as functions of the dimensionless coordinates r and z.

Potential Flow Model

The simplified model of potential flow around a sphere rising at a

uniform velocity in an otherwise still fluid of infinite extent is taken as

a first appgoximation to the velocity distribution around a rising bubble.

The potential function, _s, for this case, as given by Prandtl and Tiet-

jens (78), was transformed into cylindrical coordinates (r',z') for conveni-

ence. The transformed potential function, _c, is given by

I

_c ffi a3Uz' (Ii)

2(r,2 + z,2) 3/_

and, thus, in dimensionless coordinates r, z,

Vo .... _rT_ C = _ 3 Urz (12)

r . 2 (r2 + z2) 5/2

Ii -



and

r2
b c = -U (_2 _ 7_

U° = _z (r2 + z )5/z

Inserting the above expressions into equation (i0), where u = U and v = V
O O

for potential flow, and simplifying, we obtain

F(r) = U 2

(13)

4z 2 + r2 dz (14)

4(r 2 + zZ) 4"

0

Appendix I gives the details of the development of equations (ii), (12),

(13), and (14).

Equation (14) was integrated by numerical techniques and the results

are presented in dimensionless form in Figure 2. The upper limit of integration

H was set at that z location, for a given r, where the value of the integrand,

4z 2 + r2

4(r 2 + zZ) 4

was equal to or less than i x 10 -6 . To verify the results of the numerical

integration, equation (14) was integrated by classical mathematical methods

(see Appendix II) to give for r = 0:

5 i

(15)

12-



and for r _ 0;

- 3z + 9z + 27z24(r z + zZ)3 96r2(r z + zZ) 2 192r4(r 2 + z2)

+ 27 arctan r

192r 2

0 . (16)

The upper limit of integration H in equation (14) has been set equal to oo ,

however,

oo
V2(r,z)dz

J1 /lrj- 2,o

,'H O0

_2(r,z)dz + _2(r,z)dz , (9a)

_-r 2, 0 JH

but, since

0o

2(r,z)dz --_ O, (9b)

then

F2(r, z)dz .___

JIV 7 2,0

/_2 (r, z)dz (9c)

and no appreciable difference should be noted between the numerical integra-

tion results and the results given by equations (15) and (16). A comparison

- 13 -



of these two integrations is Shown in Figure 2.

In Figure 2 we see that as r --_ i from the interior the slope of

appears to approach infinity, i.e., there appears to be a point of discontinuity

at r = I. The existence of a point of discontinuity at r = I may be

shown mathematically in the following manner. Rewriting equation (14), for

0_< r <---I, as

F(r) = K = (z,r)dz (17)
U2

J f(r)

w here

2

g(z,r) = 4z 2 + z_
4(r 2 + )

and

f(r) = _'_,

we wish to investigate the derivative of K with respect to r as r-._l from

the interior. Employing Leibnitz' formula for differentiation of an integral

to equation (17) we obtain

g(H,r) d._H -g [f(r),r] df(r)

dr L J dr
dE
dr r

Jf(r)

(18)

Performing the indicated operations, equation (18) becomes, after some simpli-

fications,

14-
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H

d_KK = 4r - 3r 3 - ; _r(5z 2 + r2) dz . (19)

dr 4(1 - r2) % / 2(r 2 + zZ) _

Taking the limit of equation (19) as r _I, it may be shown that dKK _ OO
dr

and that there indeed is, as indicated in Figure 2, a point of discontinuity

at r = i. The details of the above development are presented in Appendix III.

Real Fluid Model

The velocity field surrounding a rising bubble deviates only slightly

from that predicted by the inviscid theory (potential flow model) except at

the vicinity of the bubble surface. Here the radial gradient of the tangential

velocity component must be of opposite sign from that predicted by the

potential solution.

B. T. C_ao(ll) considered a fluid sphere rising steadily with constant

velocity in a viscous, unbounded liquid. He solves for the velocity field

surrounding the bubble by considering that viscous effects (what he refers to

as disturbances) are important only in a very thin layer on either side of

the bubble surface. Outside these thin layers he postulates, based on other

published information, that the flow can be adequately described by potential

theory.

Since this research is concerned with the fluid velocity field, only

the exterior flow solution presented by Chao will be discussed. Chao

assumed that the fluid velocity could be given by

• O

where

16-



v--° is the velocity field,

V is the velocity field given by the potential solution
0

-_o is a perturbed velocity field in a thin region

immediately adjacent to the bubble surface,

and

By certain order of magnitude analysis and other approximations Chao

was able to reduce the full equations describing the fluid motion, i.e., the

continuity and momentum equations, to forms which enabled solution for the

perturbed velocity field. It should be pointed out at this point that Chao,

in his order of magnitude analysis, assumed that his arc-length coordinate

was of order one, and thus, his analysis cannot be expected to hold in the

vicinity of the front stagnation point. This fact is discussed by Chao.

The perturbed velocity field is given by

!where u
0

is the perturbed tangential velocity component and v' is the
0

perturbed radial velocity component, and the potential velocity field is

given by

= iV + jU o (8b)Vo o

where U is the potential tangential velocity component and V is the
o o

potential radial velocity component discussed in the previous section.

' and v_, and thus the velocity field v o is given inChao's solution for u o

17-



6

Appendix IV. It will be noted that the perturbed tangential velocity com-

' is essentially zero at _ = 2.6 since ierfc 2.6 _---0. Thus,ponent u o o '

_ 2.6, andthe "perturbed" region is considered as that region where o

is forced to zero if _ _ 2.6, thatthe perturbed radial component Vo' o

is, outside of the perturbed region. Convergence to the potential solution

_ --_ 2.6.is thus guaranteed for both velocity components for o

Chao's solution does not hold in the rear stagnation region, in fact,

' and v' increase without limit as the rear stagna-as he points out, both u ° o

tion point is approached. Ac_uaiiy, there is flow separation before the rear

stagnation point is reached. Even though there is separation of the flow and

Chao's solution is invalid in the rear stagnation regi6n, for the purpose of

this work, the velocity field will be considered symmetric and Chao's solu-

tion utilized.

Chao's solution for _ was transformed into dimensionless cylindrical
o

coordinates and revised expressions for u and v in equation (i0) were obtained.

Designating the revised velocity components as UC and VC, equation (i0)

becomes

F(r) = (_)H UC) 2 + (VC) dz. (20)

JqFfV, 0

The details of this development, as well as the final expressions for the

velocity components UC and VC are given in Appendix IV. Equation (20) was

integrated by numerical techniques and the results for a distilled water-air

system with Reynolds number equal i00 are presented in Figure 3. The Reynolds

- 18 -
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Figure 3. Comparison of 2HZ(r) for the Real Fluid Solution with 2ZH(r)

for the Potential Solution. NRe = i00, Air-distilled Water
System
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0 I

number in this instance is defined as

NRe = 2Ua
UL

where

U

a --

bubble rise velocity

bubble radius

liquid kinematic viscosity.

The remaining analysis will be concerned with the real fluid solution,

that is, F(r) as given by equation (20).

- 20 -



Development of Surface Profile Predictions

Equation (3d) gives for the dimensionless surface profile

Z(r) = F_H__ , (3d)

where, utilizing Chao's solution for the liquid velocity field, F(r) is

given by equation (20). The dimensional surface profile Z is given by
s

equation (3e). To demonstrate the behavior of equations (3d) and (3e) as the

bubble rise velocity varies, an air-distilled water system was selected, the

Reynolds number NRe = U__dvaried, and the resulting profiles calculated. The
UL

Reynolds number was used as the independet variable since it appears in the

perturbed solution for F(r) given by equation (20). The bubble diameter d,

and the bubble rise velocity U, used in the determination of NRe were taken

from the work of Haberman (37). Figure 4 gives the results for the dimension-

less profile (expressed in the form 2HZ(r) ) and Figure 5 the results for the

dimensional profile.

Figure 4 shows that Z(r) is not strongly dependent upon Reynolds

number within the range of Reynolds numbers tested. This was not entirely

unexpected, since the Reynolds number as such occurs only in the solution

for the velocity field within the perturbed region, which is quite thin when

compared to the unperturbed or potential region. Thus, the Reynolds number

should have only a slight effect on the dimensionless profile Z(r), and it

should be possible to represent the dimensionless surface profile, with

acceptable accuracy, by a single curve independent of Reynolds number. Even

though the analysis to date is based upon spherical bubbles, which generally

occur for NRe _ 400, the Reynolds number was extended to include non-spherical

bubbles. These results are also shown in Figure 4, however, they will be

- 21 -
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Figure 4. Dimensionless Surface Profile 2HZ(r) Computed

from Equation (20), for Various Reynolds Numbers
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Figure 5. Surface Profiles for Various Reynolds Numbers Computed

by Numerical Integration of Equation (20).
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excluded from the discussion that follows.

Considering only those profiles for Reynolds number less than or equal

to 430, the profile for NRe= 240 appears to be the median of the three remain-

ing profiles. Thus, utilizing a least squares method, an attempt was made to

fit an equation to this profile. Various degree polynomials, ratio of poly-

nomials, and modified cosine functions were tested with the conclusion that

the following fourth degree polynomial best represented the data:

2ZH(r) = .182907 + .086949 r - .245937 r2 + .102929 r 3 - .012489 r4. (21)

Equation (21) is plotted in Figure 6 together with equation (3d), evaluated

by numerical integration of equation (20), for comparison purposes.

The results given by equation (21) are quite good for the following

range of the dimensionless "radius r:

0< r < 2.00.

For larger values of r, equation (21) gives negative values for 2HZ(r).

However, the range of validity is sufficient for the purposes of this analysis.

Utilizing equation (21), equation (3e) for the dimensional surface

profile g becomes
s

Zs = U-_22Hg[.182907 + .086949 r- .245937 r2 + .I02929 r3 - .012489 r4] •

H, in equation (22), is equal to that value of the z coordinate where the

kinetic energy (represented by V-_ ) is equal to or less than I x 10-6 . Even

Uz

though H is a function of the dimensionless radial coordinate r, it was found

that the average value for a given Reynolds number was very nearly ten.

Setting H = i0 in equation (22)and replacing r by r' , we obtain

a

- 24 -
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_Equation (3d) Evaluated by

Numerical Integration of

Equation (20)

---- --Equation (21)

.20

Surface Profile

2HZ(r)

dimensionless

.i0

0

0 1.0 2.0

Radial position r, dimensionless

Figure 6. Dimensionless Surface Profile 2HZ(r) for

Reynolds Number of 240. Comparison of

Result Obtained by Numerical Integration

with Result Using Polynomial Fit.

- 25 -



• i

r

z = u 2 I .0091453 + .0043475_I-.1229681 r'l 2 + .00514641 r'!3

s g Llaila i

Since

(23)

U2 = NRe2 _i 2

d2

Thus, equation (23) may be written

Z
S

N 2
Re _L 2

gd 2

 005140 ( )300002 4(.)41

2

(24)

Figure 7 shows a comparison of the surface profiles given by equation

(24) with those obtained by separate numerical integration of equation (20)

for each Reynolds number. This figure shows that the surface profiles obtained

with equation (24) closely approximate those predicted by the previous theoret-

ical analysis. The values for NRe and d which were used in equation (24) to

obtain the results given in Figure 7 were taken from a replot of the data of

Haberman and Morton (37) as shown in Figure 25 of Appendix VII.

The development to this point has only considered the kinetic energy

above one bubble rising along its centerline. However, the results given

by equation (20) may be used for one or more columns of bubbles rising

rectilinearly as long as the bubble distribution is such that there is

26-
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Figure 7. Surface Profiles for Various Reynolds Numbers.

Comparison of Result Obtained by Numerical Integra-

tion with Result Using Polynomial Fit.
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negligible interference of the flow fields associated with each bubble. The

minimumvertical bubble spacing for negligible interference may be fixed as

twice the vertical distance from the bubble center to the z location where

there is a negligibly small contribution to the kinetic energy, for a given r.

The upper limit of integration becomes H in equation (20). A suitable value
min

of H . is found in the following manner:
mln

(a) Equation (20) is integrated numerically for various r's until

the integrand reaches a prescribed negligibly small value.

(b) The values of z thus obtained are arithmetically averaged to

obtain an average value for H
rain"

If the bubbles are vertically spaced at a distance D which is greater

than 2H . , then the non-dimensionalized surface profile may be obtained by
mln

taking

= Fr
Z(r) _ (25)

since

-V2D = 2 dz ---_ dz = F(r)

.! 0

(26)

This is true because

D
2

V2 dz = 0. (27)

H

The minimum radial spacing allowable may be obtained in a similar manner.
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Surface Profile Prediction for Two Columns of Horizontally Interferin_ Bubbles

As a first approach to the determination of the surface profile upon

injection of multiple columns or swarms of bubbles, the following simplified

model was considered:

Two columns of bubbles interfere horizontally, but are spaced

so that there is no vertical interference, i.e., one bubble

does not affect the velocity field of the bubble directly

above or below it but does affect the velocity field of the

bubble horizontally adjacent to it, of equal diameters and

all rising at the same velocity. Also, the bubbles are

horizontally paired, i.e., the bubbles in both columns are

rising adjacent to one another with a common horizontal

centerline at any instant of time.

As a first approximation to the velocity field generated in the above

model, a direct superposition of the velocity fields surrounding each horizon-

tally paired bubble, where the bubbles were considered to be rising singularly,

was made. The results of Chao's (ii) research were again used in these velocity

determinations.

For example, the velocity at point p, shown in Figure 8, below, was

computed in the following manner:

(i) The r and z velocity components at point P considering

Bubble i rising without the presence of Bubble 2, were

computed.

(2) The r and z velocity components at point P, considering

.... Bubble 2 rising without the presence of Bubble i, were

computed.

(3) The velocity at point P was then determined by vectorial-

ly adding the velocity components computed in steps (i)

and (2) above. The horizontal or r components will be

in the opposite direction and will be subtractive while

the vertical or z components will be in the same direction

and thus additive.

- 29 -
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Vertical coordinate

Z_

dimensionless

T
bble 1

1.0

Bubble 2

|

2.1.5 3.0

Distance between bubble centers D, dimensionless

Figure 8. Coordinate System for Two Spherical Bubbles Rising

in a Cylindrical Tank.

The dimensionless surface profile Z(r) and the dimensional surface

profile Z were computed for bubbles three radii apart from center to center,
S

and for a Reynolds number, as previously defined, of i00. These profiles are

shown in Figures 9 and I0. Comparing these profiles with those for the single

column of bubbles with no vertical interference, shown in Figures 4 and 5, we

see that for the region r _ 1.25 the profiles predicted by the superposition

method for the two columns of bubbles interfering horizontally but not

vertically lie slightly below those predicted for the single column of non-

interfering bubbles,

Since the horizontal components of velocity, i.e., the r components,

are subtractive (see item 3, page 29 ), the resultant velocity in certain

regions will be less than that in the single bubble case. This results from

the fact that the difference between the final horizontal component of

- 30 -



Surface

Profile

2HZ(r),

dimensionless

.15

.10

.5

0

Figure 9.

I I I I I

•5 1.0 1.5 2.0 2.5

Radial position r_ dimensionless

Dimensionless Surface Profile 2HZ(r) for Two Horizontally

Interfering Bubbles Three Radii Apart. Reynolds Number of
One Hundred.

3.0

.15

10

5

- 31-



Surface

profile

Z
S

feet X 104

.5

.4

.3

.2

.i

0

0 1.0 2.0 3.0 4.0

.5

.4

.3

.2

0

Radial position r',

feet X 103

Figure i0. Surface Profile for Two Horizontally Interfering
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velocity and the horizontal component for a single bubble is greater than the

additive vertical or z component from the second bubble. That is, the

horizontal component may be reduced more than the vertical component is in-

creased.
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EXPERIMENTAL

Photographic Work

The surface disturbances caused by a single column of bubbles of nitro-

gen gas rising in distilled water have been recorded photographically. The

equipment used in this work is described in Appendix VIII. Figure ii shows

the buildup and collapse of the disturbance as an individual bubble approaches

the liquid surface.

These pictures were reproduced from frames of 16 mm high speed motion

picture film. The extreme magnification was achieved by the use of a 155

mm lens which was constructed of locally available material. The focal length

necessary to obtain this magnification was such that the depth of field of

the pictures is very shallow. The refractive index of water is sufficiently

different from that of air so that with a shallow depth of field either the

surface profile or the rising bubble can be in focus, but not both. These

pictures show the surface profile in focus.

The pictures given in Figure ii are separated in time by about 1/200 of

a second. One can see in frane lla that the surface disturbance begins well

before the bubble reaches the surface. The maximum buildup of liquid ahead

of the bubble occurs when the bubble reaches the position shown in frame lid.

The bubble then penetrates the surface and produces a maximum distortion as

shown in frame llg. The remaining frames in Figure ii show the gas bubble

relaxing back to a position mostly under the liquid, and the surface wave

beginning to travel radially outward.

D_t@ Reduction

The images on the 16 mm motion picture film were projected and traced

onto large sheets of paper at a magnification, with reference to true size,

- 34 -



approximate scale 

Figure 11. Surface Disturbance Caused by a S ing le  Bubble of Nitrogen 
Gas Rising i n  D i s t i l l e d  Water. Taken from Frames of High 
Speed, 16 mm, Motion P i c t u r e  Film. T i m e  I n t e r v a l  Between 
P ic tu re s  of 1 /ZOO Second. 



of about 35 to i. Horizontal and vertical scale factors, both above and below

the liquid, were taken from a metal scale graduated in i/i00 of an inch which

had been photographed at the focal point prior to the start of bubble injection.

Initially, only the frame which recorded the maximum vertical surface

distortion was analyzed; for instance, frame llg, in Figure ii. Thirteen

measurements were taken of the height of the surface profile. These

measurements were made in both directions away from the point of maximum

height at the following values of dimensionless radial coordinate, r

r = 0, 0.2, 0.6, 1.0, 1.4, 1.8_ 2.4.

The equivalent diameter of the bubble which caused each disturbance was also

determined. The equivalent diameter is defined as the diameter of a sphere

of volume equal to the bubble volume. Appendix X gives the experimental

procedure followed to determine the bubble volume and diameter.

The surface profile data were partitioned into groups such that the

equivalent diameters of the bubbles in each group differed by less than 0o001

feet. These data were then averaged and are presented in Figure 12. This

data is given in Appendix IX. The correlation of bubble rise velocity given

in Figure 25 of Appendix VII was used with the average equivalent diameter to

determine the corresponding Reynolds number.

Comparison of Experiment@l D@ta with Analytical Results

A comparison of the experimentally determined surface profile with

the profile resulting from the analytical prediction for a Reynolds number

of 803 is given in Figure 13. The shapes of the two curves are similar,

however, it is obvious that the magnitudes are greatly different. An examina-

tion of Figure ii, especially frames llg and llh, shows that one reason for
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this difference is the penetration of the gas bubbles into the mean surface

dis turbance.

Thus it appears that a correlation equation could be constructed which

would be the sum of the analytical prediction, which would represent the

liquid buildup on the surface, and a term to represent the penetration of

the gas bubble. This equation is given below.

z -- z H +  a Ff7 (28>
c s

The term E c represents the height of the surface disturbance above the dead

liquid surface. Z is a function of r. The term ZsH is the computed maximum
C

surface profile--_the product of g s, the time average height of the disturbed

free surface above the quiescent surface, and H, the upper limit of integra-

The term _ a_ is
tion in the equation that is used to compute Zs.

the product of a_ -_, the vertical dimension from the horizontal center

line to the edge of a spherical bubble at a particular value of dimensionless

radial coordinate r, and m , which represents the degree of penetration

of the bubble.

The degree of penetration of the bubble into the surface disturbance

must depend on the velocity of rise, the size of the bubble, and the properties

of the fluid.

numb e r, NRe •

torte iation.

ing experimental values of a and Z into equation (28a).
c

= Z c . ZsH

a _ i-r'Z'

Therefore, one would expect _ to be a function of Reynolds

Figure 14 shows this to be a direct and approximately linear

The values of _ given in Figure 14 were computed by insert-

(28a)
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i i

Utilizing a least squares fitting procedure the following equation was obtained

for the degree of penetration _ :

= 0.00122NRe - 0.305. (29)

Figures 15 through 19 give a graphic comparison of the five experimental

surface profiles previously shown in Figure 12, with the results predicted

with the correlation equation, equation (28). The values of g and H were
S

obtained from equations (24) and (14) respectively, the values of _ were

determined by equation (29), and Figure 25 was used to give the relationship

between Reynolds number NRe and equivalent bubble diameter d.

The experimental and analytical results seem to be in good agreement

at the maximum point and out to about eight-tenths of the bubble radius.

However, Figures 15 through 19 show that the experimental profile lies above

the predicted profile from eight-tenths to about twice the bubble radius.

Figure ii, particularly frames llh, lli, and llj, indicates that this excess

of liquid forms the surface wave that moves radially outward from the disturb-

ance.

This difference between the computed and experimental surface profiles

for a radial coordinate in the range of 0.8 _= r--_ 2.0 is undoubtedly due to

one of the assumptions involved in the derivation of the equation for Z ,
s

probably the assumption that the kinetic energy at the surface is negligible.

The most important part of the surface disturbance as far as this

research is concerned occurs at and near the maximum. The computation of

this part of the profile may be accomplished with very good accuracy using

equation (28), equation (24), equation (29), and Figure 25.
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Figure 20. Surface Disturbance Caused by Two Bubbles of Nitrogen Gas 
Rising i n  D i s t i l l e d  Water 1/100 Second Apart. Taken from 
Frames of High Speed, 16 111111, Motion P i c t u r e  Film. Time 
I n t e r v a l  Between P i c t u r e s  of 1/200 Second. 

approximate scale 



Experimental Surface Profiles for Two Horizontally Interfering Bubbles

It is very difficult to produce simultaneously two bubbles which will

rise together and strike the surface at the same instant within two to four

bubble radii apart. However, some success has been achieved. Figure 20 gives

a sequence from the motion picture film which shows two bubbles interfering

horizontally. The resulting profile is similar in shape to that predicted

by analytical calculation and given in Figure i0. The correlation procedure

has not yet been applied to this case.
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APPENDIX I

Development of Equations Related to the Potential Solution



The potential function for the fluid motion produced when a sphere of

radius a moves with a uniform velocity U is given by Prandtl and Tietjens

(78) as

_s = Ua 3 Cosg (30)
2R'2

where the angle @ and the radial coordinate R' are as shown in Figure 21o

Z l

U

!

Bubble Surface

Figure 21. Coordinate System Potential Flow

The radial (R') and tangential components of velocity are given by

_s and _ _s respectively. Thus,
!

R R'_0

V

O :Iua3]cos0T (31)

(32)
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Defining the dimensionless variable R = R' , equations (31) and (32)

a
b ecome

and

V
__o = - cos@ (31a)
u

U = - sin8 (32a)
o

V-

Two approaches could be taken to determine expressions for the velocity

components in the r' and z' directions. One would be to transform equations

(31a) and (32a) into cylindrical coordinates r' ', z and then add vectoria!ly

their components in the r' and z' directions. The other approach, which is

the most direct, would be to transform the potential function given by

equation (30) into cylindrical coordinates and then determine the velocity

components by taking the appropriate derivatives. This latter method was

used, and the results were verified by the first approach.

The following coordinate transformations are used to transform equation

(3) into cylindrical coordinates r', z' :

R' (r'2 + z'2) ½= , (33a)

cos@ = z' , (33b)
(r'Z + z'z)%

and

sin8 : r' ° (33c)

(r '2 + z'2) ½

Rewriting equation (30) in cylindrical coordinates, we have:

Ua3 " z' . l
2 (r 'z + z'Z) ½ [(r 'z + z'2)_]

(30a)
2
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Simplifying,

_c = Ua3 Z ! o

(r 'z + z'2)3/2
(ii)

By definition

o

o _z

3Ua 3 • r'z'

2 (r,2 + z,2) D/2

Ua3(z '2 + r'2/2)

(r,2 + z,2) 5/2

(34)

(35)

By defining r = r' and z = z'

: a a

equations (34) and (35) may be written as

V = . _ Urz
o 2 (r2 + zZ) D/2

Uo = . U(z 2 - r2/2)

(r 2 ÷ z2)5/2

(12)

(13)

Now the relationship for _2(r,z) for use in equation (9) may be determined.

For the potential solution

-_2 __ V2+U 2
O O

(8c)

Equations (8c), (12), and (13) may be combined to give
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_2 = 9/4U2r2z2 +

(rz + z2)5
u_[,2.r2/_3_

(rz + _2)5

Simplifying the above expression,

_2 = 9/4U2r2z 2 + U2(z 4 . z2r 2 + r4/4)

(rz + z2)5

_2 = U2(z 4 + 5/4r2z 2 + r4/4)

' (r2 + zZ)5

_2 = U2(gz 2 + r 2).z 2
4(r z + z_)5 + r 2)

_2 = U2(4z 2 + r 2)

4(r 2 + z2)4 "

Thus, the relation

.H

(36)

F(r) = (9)

may be written for the potential flow model as

H

F(r) -- f 4z 2 + r2

/ 4(r2 + zZ)_

J_, o

dz (14)
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APPENDIX II

Integration of Equation (14)



Considering a fixed value of r, the expression

/_, 4_2 + r2

rz + z2)_

0

dz

can be written as

4(rz + z_)_
_,0

dz -- z2

rz + zZ)-4

• _, 0

dz +

CO

r2 dz

_- (r z + z2)4-

l-r 2, '0

• (37)

The two integrals on the right side of equation (37) may be integrated by

Successive application of the integration by parts technique. Thus:

OO

z2

(r2 + zZ)4

ldlZ_-_2, o

'/[rO0 z2
2 + zZ)_

_' _, 0

dz

dz --

I z

6(r 2 + z2)_5-

O0

+

/'_'Z_, 0

(CO

! _ dz
6 rz + z2)3

o

+ z

" 55 -

Z

6(r2+ z2)3
+ z

24r2(r 2 + Z2)2 -

'CO

j dz
(r 2 + z2)2 '

_17_/, o



00 z2(r2+ Z.z)4
dz E z

6(r 2 + z2)3
+ z

24rZ(r 2 + z2)2

+ 3

'00 dz
(r2 + z 2)

J_, 0

+ 3z 148r4(r 2 + z2

_l-_.r2' 0

co z2
(r 2 + zZ)4

J "l_/T_-r2, 0

z + z

6(r 2 + zZ)3 24rZ(r 2 + z2) 2

+ 3z

48r4(rz + zz)

and

O0 dz =

(r2 + z2)4

_'j'z, o

+

E

0

z +

24(r z + zZ)3
__5 dz
24 (r2 + zZ) 3

iql77-_2,o

+

z +

24(r z + zZ)3

96r

J

sz 196r2(r 2 + z2) z

V_V,

d Z

(r2 + z2)2

0

(3'8)
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OO(r_ d+Zz2)4

_ 5i77, 0

24(r 2 + z2)3
+ 5z

96r2(r 2 + zz)

+

CO

15z
192r4(r 2 + z2)

0

+

r2 foO dz = I4--/ (r2 + zZ)4

0

15
7'

dz

(rz + z 2)

z + 5z + 15z
24(r 2 + zZ)3 96r2(r 2 + z2) 2 192r4(r 2 + z2)

OO

+ 15 arctan r . (39)

l_-_2, 0

After obtaining a common denominator and combining terms of equations

(38) and (39), equation (37) becomes for r _ 0:

r [4z 2 + r2 dz -

4(r2 + z_')4

J 0

3z + 9z + 27z

24(r 2 + zZ)3 96r2(r 2 + z2) 2 192r4(r 2 + zz)

-_D

+ 27 arctan_- , (37a)

T_75 15L7-_2,0
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and for r = o

_4z 2 + r2 dz 7 00

I

0.20

(37b)
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APPENDIX III

Discontinuity in F__ Derived from Potential Solution of Velocity Field
U2



Applying Leibnitz' formula for differentiation of an integral to

K Z

H g(z, r)dz,

f(r)

(4O)

where

g(z,r) = 4z 2 + r2

4(r 2 + zZ)4

and

f(r) -- _i_-_2 ,

we obtain

P I

dr dr uj dr

f(r)

Performing the mathematical operations shown in equation (18), we obtain:

d__H
dr

#

= 0 (since H is donstant), ,

r_<_>,=_/: _-____2_ ,
_ J 4

,(18)

dr(r) = d (l.r2) ½ = r

dr dr (l-r2) @

dr  143r211 ri:4r3 34 (l-r2) @ 4(l-r )_

and

g(z 4z 2 + r = 2r(4z 2 + r2) +

r 4(r 2 + z2) 4 (r2 + zZ) 5

r

2(r 2 + zZ) 4
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_ 3r(5z 2 + E2)

2 (r2 + zZ) _

Inserting the above into equation (18), we have

dK = 4r-3r 3 - / 3r( 5z2 + rZ) dz

d-_ 4 (l-r2)½ _i__ r 2(r2 + zZ)5

(19)

Performing the integration shown in equation (19), we obtain

d__KK= 4r-3r 3 |_ 3rz 6z

dr 4(i-r2)½ " L 4(zZ + rZ)4 + 16r(z2 + r2)3

+ 1005z +

384r3(z 2 + rl) 2
H

3015 arctan_ ]

3015z

768r5(z z + r 2)

(41)

Inserting the limits of integration, equation (41) becomes

d__K = 4r-3r 3

dr 4(l-rZ) @

3rH

4(H z + rZ)4

+ 6H

16r(H 2 + rZ) 3

1005H + 3015H
+ 384r3(H2 + rZ)2 768r5(H 2 + r2)

3r_ _I
+ 7-6_r63015 arctanrH__ + '41-r2 16r 384r 3

30151_-r 2 - 3015 arctan_ 1-768r _ 768r-6 r " (42)

Taking the limit of equation (42) as r-_l, we see that the first term approaches
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D Q

infinity while the terms inside of the braces approach a finite number. Thus

lim dK

r --_i dr
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APPENDIXIV

Development of Equations Related to the Real Fluid Solution



At any point P in the perturbed region Chao (ii) defines the radial

velocity component v and the tangential velocity component u of the fluid
O o

in spherical coordinates, to be:

v = V + v' (43a)
0 0 O"

uo = U + u' . (43b)o O

In equations (43a) and (43b) V o is the radial velocity component and U ° the

tangential velocity component derivable from potential theory, and v'
o

is

the radial velocity component and u'
O

the tangential velocity component of

the perturbed velocity as derived by Chao (ii).

Dividing equations (43a) and (43b) by U, the bubble rise velocity,

yields:

!

V v °V__o -- __o +

U U U

(43c)

and

= U !u___o U__q + oR_

U U U

(43d)

As shown in Appendix I,

Vo = cos8 (31a)

and

U
o sin0

U " 2"2 r
(32a)

where R and @ are defined in Figure 22.
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Vertical
Coordinate z'

U

Perturbed Region

" U

radial coordinate r'

Figure 22. Radial and Tangential Velocity Components for the

Potential Solution and Perturbed Solution
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The perturbed components of velocity at P, given by Chao, are:

v_o

U

+ l-cosG

+

2 (1-[1- cos@] 2)sin 29 _ ierfc _ 1

erf

(44)

_o

and

U !

__o
U

2 3

1 + 4 /.Zg/ _L }i + [( Pg/ PL)( _g/ _L_

" ( (2/3 - cOse + I13 cOs30)½)sine

where the symbols are defined as:

ierfc

NRe = bubble Reynolds number = 2U___aa

_L
a = bubble radius

g = gas viscosity

L = liquid viscosity

P = gas density
g

PL = liquid density

_L = liquid kinematic viscosity = _L / PL

= (3NRe)½ sin2@ .

o 4 (2/3 - cos8 + 1/3 cos38)@

= 2 _ -B2
err _o _ dB erfc _o =

CO
ierfc _o = erfc B dB •

_o 66

(45)

I - erf _. ,
.) o

(46)



Substituting equations (31a) and (32a) into equations (43c) and (43d),

we obtain :

V !

__oo = cos8 + V__oo (47)
u U

and

U !

__oo _ sin8 Uo
2- Ro + _ , (48)U U

where

V !

U

!

and u°--Q--are given by equations (44) and (45).
U

To convert the right hand side of equations (47) and (48) from

spherical coordinates (R,8) to cylindrical coordinates (r,z) the following

coordinate transformations (see Figure 23) are used:

R = (r2 + z2)% ,

COSe = Z ,

(r2 + z2)_

and

sin@ = r

(r2 + z2)½

Transforming equations (47) and (48) into cylindrical coordinates, the

following expressions for each term are obtained:

V
_.o.o= - cos8 = - z , (31b)
U R_ (r2 + z2) z

U
__oo = - sin@ = - r (32b)

U _ 2(r z + z2) 2 '
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!

Vo 4

U 3NRe

1 + 4/_g/#L
I + E( 0g/ PL)(_g//_L)3_

m

1-- _ Z

+ 2

,(r r2+ Zz) )

erf _o

+2 ( )21 - z

1 _ (r2 + z2)%

":'(r 2 + z 2)

(44a)

and

!

u__o
U

i + 4//g/_.L

g

2_ - z i z3

3 '(r2 + z2)% + _ (r2 + z2) 3/z

ierfc _o ' (45a)

where

r2 II]¢o = (3NRe)½_ '(r'2++z2)l z3 " r2 + z2)% - i •

" (r z +Zz2)_ 3 (r Z + zZ) 3/Z]

(46a)
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Coordinate z,

dimensionless

U

__'erturbed Region

I

P

I

I

I
I

z

I

V
O

U

u
o

U

Figure 23.

Radial coordinate r, dimensionless

Velocity Components of V o and U o in the r and

z Directions U U
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After simplification

!
V

__qo
U [:+4

4 _/_L

3NR-----_+ E(.%1_,._<141/_,._

erf _o

+ 2 i ( 72 _O ierfc ,

.J

(44b)

!
u

__qo
U I+4 / _]- .___Z//x,.= . 2 T+-[(%i pL)(_i_.

I )312 zr2

• 213(r 2 + z2 _ 213z 3

r(rz + zZi_ ] ½ ] ierfC_o '
(45b)

and

= (3NRe)½

4

r2(r 2 + z2)½ - r2

[3 (r2 + z2)2 - z(r2 + z2)3/2 + i z3(r2 +z2)73

(46b)
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As shown on Figure 23, v_.qo

U

as functions of r and z by using

and Uo can now be evaluated at any point P

U

v o V o '-- = -- + V_.o (43c)
U U U

and

U !
U 0 _ U_.oo + ...qo

U U U

(43d)

where

V
__o
U

is calculated from equation (31b),

V !

__qo
U

is calculated from equation (44b),

U
__o
U

is calculated from equation (32b),

and

U !

._o
U

is calculated from equation (45b).
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The last step remaining is to determine expressions for the velocity

components in the r and z directions for use in equation (20). Defining

new velocity components for Point P, UC and VC, where UC is the sum of the

z components of Vo and Uo and VC is the sum of the r components of

U U

Vo and Uo it can be seen from Figure 23 that:

U U

v oVC = u__ocos0 + m sin0 (49)
U U

and

since

UC = v__qocos0 _ U__oosin0, or (50)

U U

cosg = z and s in0 = r ,

(rz + zZ)_ (rz + zZ)_

VC = U__o • z + V__oo . r (49a)
u (r z + zZ)_ U (r z + zZ) _

UC = V_oo • z . mUo . r (50a)
U (r2 + z2) _ U (rz + z_

where

U_.oo and V o

U U

are given by equations (43d) and (43c).
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Relations (49a) and (50a) may be used with the following equation,

l"[ ]F(r) = _{ = (UC) 2 + (VC) 2 dz

J 14V_-r2,0

to determine the time mean kinetic energy distribution for the real fluid

analysis.
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APPENDIX V

Computer Program for Integration of Equation (20)



i ;i

_JL

,\l_

i

V

U'.."

VC

IT'--

S,T ._V

EEET

Nt"t_,,.,,;cI_ t"f A, TH_F

FOR COMPUTE# PROGR,_.M ONLY

VZSCOSITY OF GAS

VISCOSITY OF LI3UID

DZNSIT: ::F L_C,JrD

3UBBLE _:EY.,',IOLDS :IU;4BER

R,_DiAL COCRD:NATE, !:OF!-D!_.ENSTOIIAL

',.'_RTTCAL JC:ORD_N;'.TC, Nr," r,r,_.... _- _.,,,",,_,',o I ONA L

PER'i'URBED TANGENI"IAL VELOCTTY COt4PONE._';T

PERlrLIRB[? RAn_IAL dZLC'CI"r",, COHPONENT

_OTENT_.:_!.. TANGE_'.!TT_L V_LOG_TY COMPO.XENT

POTE.r,;TIAL PAD;AL VELOCTTY CO'.,'.PONENI"

VF_T ,'.CAL VEL,h,."[IY ,'roMP,':" m;_........ ,..... ,T FOR THE REAl_ rL.U_O
,_,L_TION,_ :Lr:__n BY :-',.-._;'_,, 50

SOLUT:Obi: DEFINE& 9:; E,..RU_,.','O:4 z_9

ZETA SUS ZERO_ DEF!_IED BY E'3u.\T;Ol_ z_6

ERF OF ZEY;:. ,S_B ZERO

CO-r:.r-!Ct.E,_',i-S IN CURVE FIT TO r)ETER,_._,.,'NE
EF;F C_- Z_T_ SUB ;_.R,,

IERFC OF ZETA SUB ZERO

CO,:-.FFIrT.Et,!TS _..,'-iCURVE'. FIT TO DETERI_41;_E

*.r.m,-_ OF -;A :SUB _E_O
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C

100

C ,<iI_E?IC E[_ERGY REAL FLUID SOLUTION
D i,MFN..%ION Y(999}

UG=.O0001c, ",e,,,_

UL=.OC076
RG::.n-,v J'7

OL-i. 129793

P='-2, O'_TI6
"" " "_295

T=-.0096

,..-"-",00997

":_,278593

W=,230389

YY:_. 078 208

20 F_2MAT{ _.I_,FIO.4}

9Z=0.05

DO 7 [R_KI,K2, ''_,..,

R=IR

:<=I
IF {R-I,,O} 90,81,8 _

80 ?0 1

81 Z-O.o
I KEY-_ i00.0

B-=(SQRTF (3.0_,'<EY) )/4.0

C=(R*R}*($GRTF((RRR}÷(Z*Z)})_(R*R)

D--{2.0/3.0)*( ((R'R}+ (Z_Z }}*'2.0 )

E--Z*( ((R*R }+(ZWZ) }*'1.5)

F= (I.O/3.0}*(Z*Z*Z}* (((R*R}+(Z*Z) }**.50)
EF=B* (C/SQRTF (D-E+F))

VEF_V*EF
WEF=W*( EF_'_2 ) '_

XEF=X*{ EF_*3 }
i

YEF=YY* (5F*'4)

EEF=I,,O_-( I. O! {(I.O+VEF+_'_EF+XEF+YEg }**a.O )}

!F_EF_2.6} !O0,!(_8,10B i

EEFF-O+ {P+(Q+{ S+(T+U*EF )*EF I*EF }*EF )*E_

AA: {=2.0"( 3,0"*, 50 } )/ (REY**.50)

CC=4, O/{ 3.0"_REY)

AK_(I.O+{4.0*(UG/UL)},_/(I.O+(((RG/RL)*{UG/UL))**.50) )

QQ=(R*R)+( Z*Z )

AB:{ {2.013.0)*{QQ*'1.5} }- IZ*R*R)

AC_: __2.0/3.0 _* _Z_Z _Z }

AE=R_ (QQW.. 25 }

UOP=AA*AK* ({CAB+AC} _,',,50}.'AE)*EEEF

BB-:_QQ-:Z*(QQ**,SC:)})/(R*,_}
BC={.50+(BB_"'_'2.O) }*EEF
_D-.-..,r_-" O*{I.O_(BB**Z._.,'))_EF*EEEF

VOP=CC*AK* C_C_'BD}
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1 t

21

106

!18

2

i0

5

6

7

8

401

GO TO liS

UOP=O.

VOP=Oo

UO=- _R-"2.O) / CQQ _'-'.-.2.:3

US_=UO--UOP

VO=_Z./_ G_ _."_-2,, 0
VS=VO+VOP
.,.:':-_,_::{Z, v QQ,',<-.3_;. ,. IUS_(R.,(Q_.'-,. r,O_))
VC = [US",' {._,' { ',_'_.._ :;'{ _. 5 0 I ) ; + ( VS"_" ( R,f ( Q:_':!'7' Q ['3 } ) }

iF _,Y(K)"O°OOC'2'OI} 3_3_2
ZaZ+DZ
K= K+ 1
I F (VOP ;' i,108,i
N= K

FN.=Nf2
_!=FN_2. O
IF {K-!q} 4_10_4

Z=Z+DZ
X=K+I
GO TO l

_VEN:O.0
Fc, D-D=O. 0
.ME=X-1

DO 5 J=2*ME,2
EVEN = EvEr4 + Y{J,_
90 6 J=3,MO_2

FODD=FODD 4- Y{JI

SUM = DZ_iY{I)+Y':K}+Z..0"x'EVEN+4.0-_FODD;/3.¢
PRINT 8,R_SU:I_,ZS,Z
SO TO 98

FORMAT (FS.2_2£18oS,F29oS)
END

lO 100.9
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APPENDIX Vl

Origin of Spray Droplets Above Liquid Surface



Figure 24 gives a sequence of pictures taken from the motion picture

film showing an interesting phenomenon associated with the breaking of the

gas bubbles. These pictures are also spaced in time by 1/200 of a second.

After causing a surface distortion as shown in Figure ii, the bubbles normal-

ly relax into a position as shown in frames 24a, 24b, and 24c. Convection

currents generated by the rising bubbles slowly carry these bubbles toward

the walls of the vessel. Usually they break within 1 to 2 seconds.

The disappearance of one of these bubbles begins with the membrane

above the liquid surface breaking, as shown in _ama 24d. Notice that a void

in the liquid is created when this membrane breaks. Liquid quickly fills this

void, within 1/200 of a second, as shown in frame 24e. This action is so

violent that a small geyser of liquid is produced as shown in frame 24f.

Occasionally a drop of liquid is expelled upward as in frames 24g and 24h.

This phenomenon accounts for all the spray above the liquid observed in this

research.
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Figure 24. Spray Droplet Caused by Break-up of Single Quiescent 
Bubble of Nitrogen Gas Lying i n  D i s t i l l e d  Water. 
from Frames of High Speed,  16 mm, Motion Picture F i l m .  
Time Interval Between Pictures of 1/200 Second. 

Taken 

approximate scale 



APPENDXXVII

Correlation of Terminal Rise Velocity

.of

Nitrogen Bubbles Rising in Distilled Wa_er



The bubble rise velocity versus bubble radius correlation of

Habermanand Morton (37) for an air-distilled water system has been replot-

ted as Reynolds numberNReversus bubble diameter and is given as the solid

line in Figure 25. This correlation appears as Figure 4 of Habermanand

Motton.

The data taken from the high speed motion picture film include the

terminal rise velocity and the equivalent diameter of the gas bubbles. These

data were used to determine the applicability of the Habermanand Morton

correlation to our work. Figure 25 also shows a comparison of our nitrogen

gas-distilled water data with the air-distilled water correlation of Haberman

and Morton.

A best fit line through the data of this research is given as the

dashed line. This is probably about as good a comparison as is possible

considering the variation in the correlation depending on the quality of the

water as shown in the Haberman and Morton article. Also, the impurities

found in air as contrasted to our use of pure nitrogen gas could account for

a portion of the difference. Haberman and Morton do not show the extent of

the scatter of their data, therefore a quantitative comparison is impossible.

However, we have arbitrarily used the Haberman and Morton curve for the cal-

culations given elsewhere in this report.
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APPENDIX VIII

Description of Equipment



¢ i

The experimental system used in obtaining the data given in this report

is shown in Figures 26 and 27. The photograph shows all the equipment pre-

sented in the schematic diagram except the bank of photoflood lamps, which

are behind the translucent screen to the right. The lighted area on the

screen which is a result of the lights may be seen in the photograph.

The locally constructed 155 mm lens is readily apparent between the

camera body and the tank. The photograph shows the camera in position to

begin recording.

The image of the gas inlet nozzle appears in two faces of the tank wall.

This is the largest nozzle that has been used. A stream of a large number

of bubbles is shown leaving the nozzle. The twelve brass bolts which attach

the nozzle plate to the bottom of the tank may be seen. These bolts s_al an

opening large enough to accept any nozzle configuration that might be neces-

sary in this research. The nozzle configuration shown is simply a single

large nozzle. There is also the capability of changing the single nozzle

without disturbing the bolts or the liquid contents.
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39.5 I'

It

19.5 __.__

o

o

0

0

0

o

0

A. Cinerama Model 600 high speed photograph recorder with 155 mm lens

B. square plexiglas tank

C. sheet of translucent plexiglas for diffusing light

D. bank of four 300 watt photoflood lamps

E. tank of inert gas (N2, He, etc.)
F. bubbler

Figure 26. Schematic Diagram of the Experimental Apparatus

- 86 -



* 

Figure 27. Photograph of Experimental Apparatus. 
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Tabulation of Experimental Data
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APPENDIX X

Determination of Bubble Equivalent Diameter



• I

The equivalent bubble diameter is defined as the diameter of a sphere

whose volume is equal to the actual volume of the bubble. To determine the

bubble volume, the following procedure was followed:

(i) The solid geometric shape of a given bubble was assumed

to be ellipsoidal, with A, B, and C as the radii in the

x, y, and z directions respectively.

(2) Suitable values for A and C were obtained from selected frames

of the high speed motion picture film, e.g., Figure IlL, page 35.

(3) Since the radius B could not be obtained from the film, its

value was assumed to be the average of A and C.

(4) The bubble volume was calculated from

VOL = 4_7TABC . (51)

3

(5) The volume determined in step (4) above was set equal to the

volume of a sphere, and the bubble equivalent diameter calculat-

ed from:

1/3
DEQ = 6 .V0L . (52)

?r
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APPENDIX XI

Literature Survey



• f

A literature search was made to obtain the reported research relat-

ing to formation, growth, ascent velocity, shape, and size distribution of

The search included the following sources of inform-gas bubbles in liquids.

ation.

I. Chemical Abstracts

1940 - July 1964

2, Engineerin_ Index

1938 - July 1964

3. Applied Mechanics Reviews

January 1960 - July 1964

4. Chemical Titles

January 1961 - July 1964

5. ScienceAbstracts

Section A, 1940 - 1961

6. Applied Science and Technology Index

195B - March 1964

A listing of the technical articles which were obtained is given in

the Bibliography•

An attempt was made to improve the usefulness of this lengthy list by

distributing the articles into the following categories:

A. Formation of Gas Bubbles in Liquids

B. Size, Shape, and Volume Change of Gas Bubbles in Liquids

C. Rate of Rise of Gas Bubbles in Liquids

D. Swarms of Gas Bubbles in Liquids

E. Experimental Apparatus and Procedures

F. Foreign Publications of Possible Interest Which

are to be Translated

G. Publications of Peripheral Interest

- I00-
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The titles of the categories give a good description of their content

with the exception of Category G.

A number of articles were located which reported research related to

gas bubbles in liquids, but were of doubtful interest to the particular prob-

lem which is of interest in this investigation. However, in order to present

as complete a literature survey as possible, these references are given in

Category G, entitled Publications of Peripheral Interest.

A. Formation of Gas Bubbles in Liquids. Articles which are applicable

to this category are given in the Bibliography under the following numbers:

6, 7, 13, 14, 15, 16, 29, 40, 43, 44, 45, 46, 47, 53, 54, 55, 60, 70, 77, 94,

95, 97, 104.

B. Size, Sh____p__,and Volume Chan_e of Gas Bubbles in Liquids. Articles

which are applicable to this category are given in the Bibliography under the

following numbers: 2, 8, i0, 13, 17, 20, 22, 26, 28, 37, 4Z, 44, 56, 59, 60,

61, 63, 69, 71, 74, 75, 76, 80, 84, i01, 103, 104, 105, 106.

C. Rate of Rise of Gas Bubbles in Liquids. Articles which are applicable

to this category are given in the Bibliography under the following numbers:

ii, 13, 17, 22, 37, 38, 48, 53, 66, 68, 71, 82, 85, 92, 93, i01, 102.

D. Swarms of G___ Bubbles in Liquids. Articles which are applicable

to this category are given in the Bibliography under the following numbers:

53, 60, 99.

E. Experimental Apparatus and Procedures. Articles which are applicable

to this category are given in the Bibliography under the following numbers:

3, 6, 13, 14, 16, 17, 20, 28, 37, 38, 40, 43, 46, 49, 51, 52, 53, 60, 62, 67,

70, 71, 77, 81, 85, 92, 95, 98, 99.

- I01-



F. Foreign Publications of Possible Interest which are to be Tran_s-

I_. Articles which are applicable to this category are given in the

Bibliography under the following numbers :

German Articles - 12, 35, 36, 50, 89, 90

French Articles - i, 5

Russian Articles - 33

G. Publications of Peripheral Interest. Articles which are applicable

to this category are given in the Bibliography under the following numbers:

4, 9, 18, 19, 21, 23, 25, 25, 27, 30, 31, 32, 34, 39, 41, 57, 58, 64, 65, 72,

73, 78, 79, 83i 86, 87, 88, 96, 100.
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